317 research outputs found

    Overcoming non-Markovian dephasing in single photon sources through post-selection

    Get PDF
    We study the effects of realistic dephasing environments on a pair of solid-state single-photon sources in the context of the Hong-Ou-Mandel dip. By means of solutions for the Markovian or exact non-Markovian dephasing dynamics of the sources, we show that the resulting loss of visibility depends crucially on the timing of photon detection events. Our results demonstrate that the effective visibility can be improved via temporal post-selection, and also that time-resolved interference can be a useful probe of the interaction between the emitter and its host environment.Comment: 5 pages, 2 figures, published version, title changed, references update

    Fault tolerant quantum computation with very high threshold for loss errors

    Get PDF
    Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.Comment: 4 pages, comments still very welcome. v2 is a reasonable approximation to the published versio

    Privatisation in Ireland

    Get PDF
    Public enterprises in Ireland were offshoots of political nationalism. They were part of a protectionist economic policy and in 1980 employed over 90.000 staff in a total national employment figure of 1.1m. Public opinion moved away from public enterprises because of perceived high costs to both consumers and taxpayers. In the Celtic Tiger era since 1987 the share of public enterprises in total employment has fallen by almost two-thirds to 2.7 percent. Ireland has experienced major increases in GNP per head and in employment by adopting open economy policies and securing large increases in exports and in foreign direct investment. No privatised enterprise has been re-nationalised. It is public policy to retain network infrastructure such as the electricity and gas grids in public ownership while selling state companies in areas such as food, banking, telecoms, and shipping.

    Fully fault tolerant quantum computation with non-deterministic gates

    Full text link
    In certain approaches to quantum computing the operations between qubits are non-deterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should assumed to be failure prone. In the logical limit of this architecture each component contains only one qubit. Here we derive thresholds for fault tolerant quantum computation under such extreme paradigms. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded, meanwhile the rate of unknown errors should not exceed 2 in 10^4 operations.Comment: 5 pages, 3 fig

    Quantum computation via measurements on the low-temperature state of a many-body system

    Get PDF
    We consider measurement-based quantum computation using the state of a spin-lattice system in equilibrium with a thermal bath and free to evolve under its own Hamiltonian. Any single qubit measurements disturb the system from equilibrium and, with adaptive measurements performed at a finite rate, the resulting dynamics reduces the fidelity of the computation. We show that it is possible to describe the loss in fidelity by a single quantum operation on the encoded quantum state that is independent of the measurement history. To achieve this simple description, we choose a particular form of spin-boson coupling to describe the interaction with the environment, and perform measurements periodically at a natural rate determined by the energy gap of the system. We found that an optimal cooling exists, which is a trade-off between keeping the system cool enough that the resource state remains close to the ground state, but also isolated enough that the cooling does not strongly interfere with the dynamics of the computation. For a sufficiently low temperature we obtain a fault-tolerant threshold for the couplings to the environment.Comment: 9 pages, 3 figures; v2 published versio

    Preparing multi-partite entanglement of photons and matter qubits

    Full text link
    We show how to make event-ready multi-partite entanglement between qubits which may be encoded on photons or matter systems. Entangled states of matter systems, which can also act as single photon sources, can be generated using the entangling operation presented in quant-ph/0408040. We show how to entangle such sources with photon qubits, which may be encoded in the dual rail, polarization or time-bin degrees of freedom. We subsequently demonstrate how projective measurements of the matter qubits can be used to create entangled states of the photons alone. The state of the matter qubits is inherited by the generated photons. Since the entangling operation can be used to generate cluster states of matter qubits for quantum computing, our procedure enables us to create any (entangled) photonic quantum state that can be written as the outcome of a quantum computer.Comment: 10 pages, 4 figures; to appear in Journal of Optics
    corecore